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The method of multiple scales is used to analyze three non-linear physical systems
which support dispersive waves. These systems are (i) waves on the interface
between a liquid layer and a subsonic gas flowing parallel to the undisturbed
interface, (ii) waves on the surface of a circular jet of liquid, and (iii) waves in a
hot electron plasma. It is found that the partial differential equations that
govern the temporal and spatial variations of the wave-numbers, amplitudes, and
phases have the same form for all of these systems. The results show that the
non-linear motion affects only the phase. For the constant wave-number case,
the general solution for the amplitude and the phase can be obtained.

1. Introduction

We consider in this paper three weakly non-linear physical systems which
support dispersive waves whose amplitudes, phases, frequencies, and wave-
numbers are slowly-varying functions of both space and time. These systems are
(i) interaction of capillary gravity waves with a subsonic flow moving uniformly
parallel to the undisturbed liquid surface, (ii) waves on the surface of a circular
column of liquid neglecting gravity, and (iii) waves in a hot electron plasma.

A number of techniques have been used to treat such weakly non-linear
dispersive waves. We limit our discussion below to those which treat both the
temporal and spatial variations of the wave parameters. Sturrock (1957) used
the derivative-expansion method (a form of the method of multiple scales) to
determine the amplitude and phase variations of waves in non-linear electron
plasmas. The method of multiple scales has been used by the following: Nayfeh
(1965) to determine the amplitude and phase variation of waves in a hot electron
plasma; Luke (1966) to determine the amplitude, frequency, and wave-number
variations for waves governed by the Klein—Gordon equation as well as by a
general variational equation of second order; McGoldrick (1970) to determine the
amplitude and phase variations for the problem of second-harmonic resonance in
the interaction of capillary and gravity waves; Emery (1970) to extend the work
of Luke to the cases of several dependent variables, and several rapidly rotating
phases; Nayfeh (1971 a) to determine the amplitude and phase variations for the
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problem of third-harmonic resonance in the interaction of capillary and gravity
waves; and Nayfeh (1971b) to extend the work of McGoldrick by including the
effects of near resonance, depth of the liquid layer, and an external subsonic gas
flowing parallel to the undisturbed liquid surface.

Montgomery & Tidman (1964) and Tidman & Stainer (1965) used an extension
of the Krylov--Bogoliubov-Mitropolski technique (Bogoliubov & Mitropolski
1961) to determine the amplitude and phase variations for waves in non-linear
cold and hot electron plasmas, respectively. Whitham (1965a) used the method of
averaging to determine the amplitude, frequency, and wave-number variations
for waves governed by the Klein—Gordon equation, shock waves, and gravity
waves.

Whitham (19655b) showed that his previous results (Whitham 1965a) could be
obtained in a simpler and more elegant manner by averaging of the Lagrangian
of the original system of equations, because the desired equations for the wave
parameters are the Euler-Lagrange equations for the averaged Lagrangian. A
similar technique has been in use for a long time by celestial mechanicians (see,
for example, Brouwer & Clemence 1961) to determine the amplitude and phase
variations for non-linear systems. According to this technique the Hamiltonian
is averaged to remove the short period terms (rapidly rotating phase variation),
and then the desired equations for the amplitude and phase variations are just
Hamilton’s equations corresponding to the averaged Hamiltonian. Whitham
(1967 a) applied the averaging of the Lagrangian technique to gravity waves, and
Whitham (1967b) reviewed variational methods and their applications to water
waves. Simmons (1969) used this technique to determine the variations of the
amplitudes and the phases for the problem of triad resonance in the interaction
of capillary and gravity waves. Grimshaw (1970) used this averaging technigue
to analyze solitary waves in water of variable depth.

The interaction of capillary-gravity waves with an external subsonic gas is
treated in the next section. Capillary waves on a cylindrical column of liquid are
then treated in § 3 while the problem of non-linear hot electron plasma oscillations
is treated in §4.

2, Interaction of capillary-gravity waves with a subsonic gas

In this section we consider non-linear waves on the interface between an
inviscid liquid and an inviscid subsonic gas flowing with a uniform velocity U,
parallel to this interface. The gas is assumed to be of infinite depth, while the
liquid is assumed to be of finite depth with its second face adjacent to a solid
surface. The motion is assumed to be two-dimensional and to be represented by
potential functions. Distances and time are made dimensionless using

k' = (olpg)t and (gk.)%,

where g is the body acceleration assumed to be acting toward the liquid, and p
and o are the liquid’s density and surface tension respectively. The gas density
p, is assumed to be small compared to the liquid density so that the gas body force
can be neglected. Moreover, the gas velocity U, is assumed to be very much larger
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than the surface wave velocity, so that the transient motion of the gas can be
neglected.

A Cartesian co-ordinate system «, y is introduced such that the x axis is in the
plane of the undisturbed interface while the y axis is normal to this interface and
directed from the liquid to the gas. The potential functions representing the
motions of the liquid and the gas are taken to be

g gz, y,0), Ule+ O, y,0))/k,
where the dimensionless functions ¢ and ® are given by
Vi =0, —-h<y<?y (2.1)
and (see, for example, Van Dyke 1964, p. 107)
®,, +m?,, = M[3(y—1) (20, + D2+ BF) (D, + D,,)
+ (20 + 0F) Py, + 2(1 + 0,) 0, O + PFD,, ] (7 <y < 0) (2:2)

for — oo < & < 00, where 5(x,t) is the elevation of the wave above the undisturbed
interface, M is the gas Mach number, and

m?=1— M2
Away from the gas/liquid interface,
$,=0 at y=—h, (2.3)
®,>0 as y-—oo, (2.4)

where % is the dimensionless depth of the undisturbed liquid layer. At the gas/
liquid interface, the normal components of the gas and the liquid velocities are
equal to each other and to that of the interface itself; that is

M+ Py =1:9. at  y=7, (2-5)

Pe=Qy=—79.Q, at y=1. (2.6)

The remaining boundary condition is provided by the balance of the normal
forces at the interface; that is,

1~ Ge+3(B3+85) = Ng(L+n2)E—dmyC, at y =1 (2.7)

where y = p, U2/(pgo)} and C,, is the pressure perturbation coefficient exerted by

the gas on the interface due to the appearance of waves, and it is given by (see,
for example, Liepmann & Roshko 1960, p. 206)

Cp = lyM*){[1-3(y—1) M*2D,+ DL+ O "1 -1}, (2.8)

with vy the specific heat ratio of the gas.
To determine an approximate solution for (2.1)-(2.8) for small but finite
amplitudes using the method of multiple scales, we assume that
3

W) = T e, (E7,0)+0(e) (29)

3
Bav) = T OE7,0,9)+ E0,67) +0(E) (2.10)
Oat) = T e ,(E,7,0,9)+ 006, 2.11)

30 FLM 48



466 A. H. Nayfeh and S. D. Hassan

where € is a small parameter of the order of the maximum steepness ratio of the

wave, and
E=¢€%, T=¢%, O=C{ET)e (2.12)

Thus, £ and 7 are slow scales, whereas 6 is a fast scale. Since (2.3) and (2.4) are
linear, each ¢, satisfies (2.3) while each ®@,, satisfies (2.4). The function ¢, corres-
ponds to absorbing the Bernoulli constant into the potential of the liquid. The
derivatives are transformed according to

7 0 7
A SN
= =kzpte 5 (2.13a)
0* 0> o*
A ¥ Y 2
g = k? 3024—2(—: k3065+6 k530+6 prX (2.13b)
0 0 0
g gL
5= w30+e 50 (2.13¢)
where k=¢ and o=-C. (2.13d)

Substituting (2.9)—(2.13) into (2.1)-(2.8), and equating coefficients of like
powers of €, we get equations to determine 9, ¢, and ®,,. The solution of the
first-order problem is taken to be

m= A+ AE e, (214
b1 = LLAE e A(g,m)ei0) CIEULR), (2.15)
®y = —— [A(E,T)e?— A(E, T)e?]ebm, (2.16)

where A is a complex unknown function of § and 7, and v and % satisfy the dis-
persion relationship

0? = k(k*—ky+1)/C,, C, = cothnkh. (2.17)
Then, the solution of the second-order problem is
7, = 2f, A%e%9 4- CC, (2.18)
by = 207 fo A2t % +CC, (2.19)
i M .
D, = — pos [2f3+ Ye(y+1) - y] A2 e g~2kmy 4 OC, (2.20)

where CC stands from complex conjugate, and
03 — 0% — 4C, Gy) + 2k2x[m® + §(y +1) M} /m®

f1 = 4
x [4k2—2ky+ 1 - 2(k2—ky+1)C,)C,], (2.21)
fo=Ffi—3Cik, (2.22)
11 M4
fa=fit+ [ ﬂﬂ—‘g(vﬂ);l—s—] k. (2.23)
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With the first- and second-order solutions known, the third-order problem
becomes

. B wA wd
k2 Baon + Pay = {[210 (k sinh kh) £ Ic ginh kh

w4
e i i
o ki(y+ k) sinh k(y+k)} e?+CC, (2.24)

kg] cosh k(y + k)

Em2®ypp + Oy, = — 4i(py + pay) A2 ¥ e~3kmy
—m[2kA;+ ke A — 2mkk, Ayle? e~*mv + CC+ NSPT, (2.25)
—WNge+ Pay = — (41ps A2A + A4,) e+ CC+NSPT at y =0, (2.26)
kngg— Dy = — (4ip, A24 + 4;) €+ CC+NSPT at y =0, (2.27)

- . wd
T+ Oy = g~y = | 40+ X0 AT+ () coshkh

+i%hk,A +i(2k—x) A+ ikgA] e?+CC+NSPT at y =0, (2.28)
where NSPT stands for non-secular producing terms, and the p’s are defined in the
appendix.

The particular solution of (2.24)-(2.28) contains secular terms which make
715/77; be unbounded as 6 — co. The condition which must be satisfied for there to
be no secular terms is

24, + 2c, A; +c, Ak, = 8iJ A4, (2.29)
where ¢, = dw/dk is the group velocity, ¢, = dc,/dk, and
__k [ _CGop, lxpy _xp»
= 0,0 [‘T—zm— 16k2m2+x1"4+?<1"6+105] (2:30)
If we let A = aexpif with real @ and f, the solution to second order is
7 = ea cos (0 + ) + %a?f; cos 2(0 + F) + O(e?), (2.31)
_ . coshk(y+h) ,, . . cosh 2k(y + k) 5
¢ = —eawsin (0+f) “Tsimhih €Y wf,sin 2(60+ ) m+0(6 )
(2.32)
ca M.
= Esm (0+p) —’"’W+——— fs+Lk(y + 1) 5 Y| sin 2(0+ f) e~#mv 4 O(e3),
(2.33)
where k=0, o=-0, (2.34)
(0k[oT) + c,(ok[2E) = 0, (2.35)
w? = k(k*—ky+1)tanh kb, (2.36)
(0a?[0T) + 8(c,a?) [0k = 0, (2.37)
(0p]oT)+c,(06]08) = Jat. (2.38)

If w and k are constants, and if ¢ and £ are independent of £, than a = a constant
and £ == Ja?7. In this case, the above solution reduces to that obtained by Nayfeh
& Saric (1971). If, in addition, y = 0 (no external gas), the above solution reduces
to those obtained by Kamesvara Rav (1920), Barakat & Houston (1968), and

30-2
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Nayfeh (1970a). As h— o0 also (infinite depth), the solution reduces to those of
Wilton (1915) and Pierson & Fife (1961).
For an infinite liquid depth (i.e. 2 - 0),

_ Lo —Em?+ 4y +1) M4 jm?

h= 2 1 —2k? (2.39)

fo=fi—1k, (2.40)
14+m?2 M

e i L (2.41)

w? = k(k2—ky+1). (2.42)

Equations (2.31) and (2.33) remain unchanged in form while (2.32) becomes
¢ = —ea(w/k)sin (04 B) e — e2a?f,(w/k) sin 2(0 + ) e2k¥ + O(6?). (2.43)
In the absence of the external gas (i.e. ¥y = 0),

_ ke3-01-40,C) .,
h= S )= 2wy 2= A0k

w* = k(k?+ 1) tanh kh. (2.45)

In this case, 7 and ¢ are still given by (2.31) and (2.32) while @ = 0. If, in addition,
the liquid is infinite in depth,

2
7 = €a cos (9+ﬁ)+%kil—_t2%eza2 cos 2(6+ f) + O(e?), (2.46)
¢ = ea%sin (04 B)e*v —~ Ze%a’w 1 _I_Czkz sin 2(0+ B)e?® + O(e®), (2.47)
w? = k(k2+1). (2.48)

In addition, if w and % are constants, the solution (2.46)-(2.48) with @ and g given
by (2.37) and (2.38) is the same as that obtained by Nayfeh (1971a).

Although the solution (2.31)—(2.38) is valid for a wide range of values of w and k,
it breaks down when

k(4k?— 2Ly + 1) tanh 2kh = 2(k2 — ky + 1) tanh kh. (2.49)

This condition represents the second-harmonic resonant case treated by Nayfeh
(1971b) for constant w and & but varying @ and f. The second-harmonic resonant
case of infinite liquid depth and no external gas has been treated by Simmons
(1969) and McGoldrick (1970). Periodic wave solutions for this resonant condition
were obtained by Nayfeh & Saric (1971), Barakat & Houston (1968) for y = 0,
and Wilton (1915) and Pierson & Fife (1961) for y = 0 and A—c0.

Equations (2.35), (2.37), and (2.38) have the same form as those which will be
obtained in §§3 and 4 for waves on a circular column of liquid, and for waves in a
hot electron plasma. Therefore, the discussion of these equations is presented for
the three problems discussed in this paper in §5.
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3. Waves on the surface of a cylindrical jet of fluid

It is assumed that the fluid jet is both inviscid and incompressible, and the
effects of the surrounding fluid are negligible. The flow is assumed to start from
rest so that it can be represented by a potential function ¢, and the undisturbed
jet is assumed to be circular with radius E. The following analysis is restricted to
axisymmetric waves.

All physical quantities are made dimensionless using the characteristic length
R, and the characteristic time (oR3/T)}, where p and 7' are the fluid density and
surface tension respectively. In a dimensionless cylindrical co-ordinate system
(r and =z with x along the jet axis), the dimensionless potential function ¢ is
given by

V¢ = 0, (3.1)
for r<14+9(@,t) and —o0 <z <00,

where 7 is the dimensionless elevation in the r direction, and ¢ is the dimensionless
time. The kinematic and dynamic boundary conditions at the liquid surface are

77t+¢r = 77x¢x’ (3-2)
G — HP2+ D) + (1472 = A+ (1492241 =0
at r=147yx1). (3.3)

To determine an approximate solution to (3.1)-(3.3) we assume that

3
W) = 3 e, 7,0)+0(E) (3.4)
bz,rt) = 3 nGoll,T,0,7)+0(6), (3.5)
n=1

where ¢ is a small but finite amplitude quantity which is of the order of the
maximum steepness ratio of the surface waves, and

E=¢e2, T=¢%, 0O=C0& 1) (3.6)

The transformation of the x and ¢ derivatives are the same as in (2.13). Sub-
stituting (3.4)—(3.6) into (3.1)—(3.3) and equating coefficients of like powers of ¢,
we obtain equations to determine #,, and ¢,,.

The solution of the first-order problem is taken to be

7y = AE, 1)+ A, 7)e?, (3.7)
B = i(0[k) [A(E, 7) e — A(E, 7)) [Ty(kr)/ L(R)], (3.8)

where w and k satisfy the dispersion relationship
w? = k(K= 1) [L(R) [ (k)). (3.9)

Here, I, and I, are the modified Bessel functions of the zero and first order,
respectively. If w, k, and 4 are assumed to be constants, (3.7)—(3.9) reduce to
the solution of Rayleigh (1945, p. 351). Travelling-wave solutions are possible
only when k > 1. If k < 1, disturbances grow with time, and hence the liquid
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column is unstable. In what follows, we restrict our analysis to the case k > 1.
With the above first-order solution, the solution of the second-order problem is

Ny = ¢ AA +q; 422+ CC, (3.10)

@y = iq,wA2[I(2kr)/2k I, (2k)]€?¥ + CC, (3.11)

where ¢, = 32 [I (k)L (k)] — fw?+ 1 — 32, (3.12)
_ Bk[(1—3K2) [Lo(k)/ Ly (k)]+ (k2 — 1) [ (k) Ly(k)] + ke — (1]k)]

2= 452 — 1 — 202 I (2k) K, (20)] » (3.13)

¢ = 3+ [T (R) L)) — 3. (3.14)

If the initial conditions are periodic in x, and if the motion is started from rest,

then ¢, = — 4.
The above first- and second-order solutions determine the third-order problem.
Its particular solution contains secular terms whbich make #,/%, unbounded as

60— oo unless
2€é+2 aA+c kA—SzJAA (3.15)
or T ok
where ¢, = dw/dk, c; = dc,/dk, and
- ( )

As in §3.1, letting 4 = laexpif with real a and S, and separating real and
imaginary parts in (3.15), we obtain

a%:7_2+;€ (cya?) = 0, (3.17)
3ﬂ Wb _ g
gag = Ja? (3.18)

If we consider the temporal variation only, w,k, and a are constants, and
B = Ja?r. This latter solution agrees with that of Wang (1968) if ¢, = — 4. Since
J -0 as k> 1, the solution presented in this section is invalid near £ = 1. Nayfeh
(1970b) obtained an expansion valid near k£ = 1, taking into account the tem-
poral variation only. Equations (3.17) and (3.18) have the same form as (2.37) and
(2.38) and they will be discussed in §5.

4. Non-linear oscillations in a hot electron plasma

We consider in this section non-linear longitudinal travelling waves in a hot
electron plasma in the absence of magnetic fields. The fluid dynamical equations
are

on 0

7t+a—x(nu) =0, (4.1)
ou ou 1 op e
o T T m (4.2)
op 0 op
8—t+38_ (pu)— 2u5:5 =0, (4.3)

oot = 4menu, (4.4)
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where 7 is the electron number density, m is the mass of an electron, % is the
velocity, p is the pressure, and E is the electric field.

To determine an approximate solution for small but finite amplitude waves we
assume that

n=ny+ sél esng(§,7,0)+ O(eY), (4.5)
u = é‘l eSuy(£, 7, 0)+0(e), (4.6)
p=po+ T o ET.0)+0(H), (&)
E= Sél eE(&,1,60)+0(eY), (4.8)

where £, 7, and 6 as well as the derivatives are given by (2.12) and (2.13). Here¢
is a small but finite quantity of the order of the amplitude of oscillation; it is
introduced for convenience to keep track of the ordering and it will be set equal to
unity in the final solution.

Substituting (4.5)-(4.8), (2.12) and (2.13) into (4.1)—(4.4), and equating co-
efficients of like powers of €, we get equations to determine the different perturba-
tion quantities. The solution of the first-order problem is taken to be

B, = A(E, 7)€+ A(E,T)e?, (4.9)
= e [A(E e~ A 7)), (4.10)
ny =~ [A(E, )~ A(E, e, (&.11)
P = o (A7)~ A 7)) (12

where » and k satisfy the dispersion relationship
w? = w} +k2VE. (4.13)
Here, w, and ¥, are the plasma frequency and the thermal speed and given by
Wl = dmnge?/m, VZI= 3py/mn,. (4.14)
Then, the solution of the second-order problem is

_ ke(30% + 4k V2)

By 12imenyw? (422 — A2e=27), (4.15)
Pa= —’“21"133;‘23;;2?5?3) (A2e%0 4 A2e20), *17)
1y = _ k*(3uwp + 4KV (42620 4. Z2e-20), (4.18)

2 5212 )2
24 efnjwsy,
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Using the first- and second-order solutions, we can combine the third-order
equations to give
2 62E3 NP 2
w0y \ g + E;) = i{wpd, + w(dw), + VIk[(AL), + (dw)]
+w Vi Ak), — 8iw2J A24}e? + CC+ NSPT, (4.19)
kK*V2(302 + 8k2V2)

where J =—
96m2e2nfwl w

(4.20)

Annihilating the secular producing terms on the right-hand side of (4.19), and
using the relationships k, = —w, = —c,k; and ¢, = dw/dk, we get
04 0A -
3 2
25+ 20 e Aag = 8iJ 424, (4.21)
where ¢, = dc,/dk. Letting 4 = aexpif withreal  and fin (4.21), and separating
the real and imaginary parts, we obtain

da® 0

—a_’—_+a—g(cga2) =0, (422)
0 0

a—'f+c,,£ = Jaz. (4.23)

If w and k are taken to be constants, then (4.21) reduces to the equations of
Tidman & Stainer (1965) and Nayfeh (1965). Equations (4.22) and (4.23) have
the same form as (2.37) and (2.38) obtained for the interaction of capillary and
gravity waves, and (3.17) and (3.18) obtained for waves on the surface of a
circular liquid jet. These equation are discussed in the next section.

5. Discussion

In our treatment of non-linear dispersive waves (i) on the interface between a
subsonic gas and a liquid, (ii) on the surface of a circular column of liquid, and
(iii) in a hot electron plasma, we found that the wave-numbers, amplitudes, and
phases are governed by

ok ok

—a?'i'cg%:(), (5])
8(12 0
N 8x (c,a%) =0, (5.2)
0
8/: 8’8 Je2a2, (5.3)

where ¢, is the group velocity and J is a known function of k£ and the parameters
of the problem considered. Of course, ¢, and J are not the same for the three
problems considered.

Although the three physical problems considered in this paper represent
wealkly non-linear waves, they seem to be rather unrelated problems. However,
when we treated them by the same mathematical technique, we found out that
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the equations governing the wave-number, amplitude and the phase are for-
mally given by the same equations (5.1)—(5.3). Thisresult lead us to conclude that
these problems represent the same physical phenomenon. To emphasize this fact,
we felt that we should publish all of these results in one paper rather than in three
separate papers.

To explain physically why these three problems should be represented formally
by the same equations, we notice that (5.1) represents the conservation of the
waves. Equation (5.2) states that the energy represented by the square of the
amplitude propagates with the group velocity c, along the characteristics

dax/dt = c (k). (5.4)
This is so because, if Az is a distance between two of these characteristics,
d d dx da? ok
2 - 2 = 2./
7 (a?Azx) = Ax ;T A 7 = Az [ 2 T 5, ] 0, (5.5)
because (5.2) can be written as
da?|dt = —c k a? (5.6)

along the characteristics (5.4). To interpret (5.3), we observe that in the non-
linear case, the dispersion relation can be written as

o = flk;a?). (5.7)
For small @ one can expand this equation to obtain
o = fo(k) +folk)a®+ ..., (5.8)

where @, = fy(k,) is the linear dispersion relationship. If we assume that
©=w,+Avw, k=Fk,+Ak (5.9)
in (5.8), and keep linear terms only, we have
Aw = ¢, Ak + fo(ky) a?, (5.10)
where ¢, = f(k,) is the group velocity. If we introduce a phase function f(, t)
such that Aw = —0jat, Ak = 3ffex, (5.11)

then (5.10) will have the form (5.3). Therefore (5.3) represents the second-order
term in the dispersion relationship.

Equations (5.1) and (5.2) show that to second order k and a are not altered by
the non-linear motion. However, the effect of the non-linear motion modified £ as
seen from (5.3). These results indicate that, to determine (5.1)-(5.3) for any
weakly non-linear dispersive non-dissipative wave problem, we do not need to
carry out an analysis similar to those presented in §§2-4. From a linear analysis,
we get the dispersion relationship w, = fy(k,) and the group velocity c, = dw,/dk,
which determines (5.1) and (5.2). To write down (5.3), we need only to determine

J. This can be done by carrying out an analysis for constant w, k, and a to obtain
either dg/dt or df[dx because

J = (1/e2a®) [df]dL, c,df[dx]
from (5.3).
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To solve (5.1)—(5.3), we solve (5.1) first to obtain k = a constant and hence
w = a constant along the characteristics dx/dt = c,(k), which are straight lines in
the (x,t) plane as a consequence. By writing (5.2) and (5.3) asin (5.6) and

dpdt = — Jea? (5.12)

along the same characteristics, we can compute a2 and then /.
For a constant @ and hence a constant k, (5.3) reduces to

oa? oa?

_é>f+cﬂa=0’ (5.13)
The solution of (5.13) is

a? = Flx—c,t), (5.14)

where F is determined from the initial conditions. Since J = J(k) is a constant,
the solution of (5.3) is

B = 3e3(J]c,) (@ +c,t) F(x—c,t) + G (x —c,t), (5.15)

where G is determined also from the initial conditions. A similar solution to (5.14)
and (5.15) was obtained by Nayfeh (1971 q) for the case of waves on the surface of
a liquid of infinite depth.

If the initial conditions are such that @ and f are independent of position, in
addition to w and & being constants, then a = a constant, and

g = Jeta%. (5.16)
This yields a frequency shift. If @ and f are time-independent,
[ =Jela* (5.17)

and the non-linear motion produces a wave-number shift.

We are indebted to Dr W. S. Saric for valuable comments and discussions.

Appendix
1 1 MH
py=— M2 [5 (7+ —7+3) fotdly+1)(2y=3)_ 3

ME(1 3mA+2m2—1
+%(’}’—1)W(*”72+3)——4m3h—_]; (A1)
1.M5 v+1
2= g (Yt )(—~m2 —7+3), (A2)
lw
Py =53 (0 +840+3); (A 3)
1 1(2 M4
p4=(2m—ﬁ)f3+—2-(%—M)fl—%—%(erl)W—%mz; (A4)
wZ

Ps = [(1—0102)f2+%f1_301]ﬁ‘i‘%kz; (A5)

M4 M2/ 3
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