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The method of multiple scales is used to analyze three non-linear physical systems 
which support dispersive waves. These systems are (i) waves on the interface 
between a liquid layer and a subsonic gas flowing parallel to the undisturbed 
interface, (ii) waves on the surface of a circular jet of liquid, and (iii) waves in a 
hot electron plasma. It is found that the partial differential equations that 
govern the temporal and spatial variations of the wave-numbers, amplitudes, and 
phases have the same form for all of these systems. The results show that the 
non-linear motion affects only the phase. For the constant wave-number case, 
the general solution for the amplitude and the phase can be obtained. 

1. Introduction 
We consider in this paper three weakly non-linear physical systems which 

support dispersive waves whose amplitudes, phases, frequencies, and wave- 
numbers are slowly-varying functions of both space and time. These systems are 
(i) interaction of capillary gravity waves with a subsonic flow moving uniformly 
parallel to the undisturbed liquid surface, (ii) waves on the surface of a circular 
column of liquid neglecting gravity, and (iii) waves in a hot electron plasma. 

A number of techniques have been used to treati such weakly non-linear 
dispersive waves. We limit our discussion below to those which treat both the 
temporal and spatial variations of the wave parameters. Sturrock (1957) used 
the derivative-expansion method (a form of Che method of multiple scales) to 
determine the amplitude and phase variations of waves in non-linear electron 
plasmas. The method of multiple scales has been used by the following: Nayfeh 
(1 965) to determine the amplitude and phase variation of waves in a hot electron 
plasma; Luke (1966) to determine the amplitude, frequency, and wave-number 
variations for waves governed by the Klein-Gordon equation as well as by a 
general variational equation of second order; McGoldrick (1970) Do determine the 
amplitude and phase variations for the problem of second-harmonic resonance in 
the interaction of capillary and gravity waves; Emery (1970) to extend the work 
of Luke to the cases of several dependent variables, and several rapidly rotating 
phases; Nayfeh (1971 a) to determine the amplitude and phase variations for the 

t Present address: Engineering Mechanics, Virginia Polytechnic Institute and State 
University, Blackaburg, Virginia. 
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problem of third-harmonic resonance in the interaction of capillary and gravity 
waves; and Nayfeh (1971 b )  to extend the work of McGoldrick by including the 
effects of near resonance, depth of the liquid layer, and an external subsonic gas 
flowing parallel to the undisturbed liquid surface. 

Montgomery & Tidman (1964) and Tidman & Stainer (1 965) used an extension 
of the Krylov-Bogoliubov-Mitropolski technique (Bogoliubov & Mitropolski 
1961) to determine the amplitude and phase variations for waves in non-linear 
cold and hot electron plasmas, respectively. Whitham (19654 used the method of 
averaging to determine the amplitude, frequency, and wave-number variations 
for waves governed by the Klein-Gordon equation, shock waves, and gravity 
waves. 

Whitham (19656) showed that his previous results (Whitham 1965a) could be 
obtained in a simpler and more elegant manner by averaging of the Lagrangian 
of the original system of equations, because the desired equations for the wave 
parameters are the Euler-Lagrange equations for the averaged Lagrangian. A 
similar technique has been in use for a long time by celestial mechanicians (see, 
for example, Brouwer & Clemence 1961) to determine the amplitude and phase 
variations for non-linear systems. According to this technique the Hamiltonian 
is averaged t o  remove the short period terms (rapidly rotating phase variation), 
and then the desired equations for the amplitude and phase variations are just 
Hamilton’s equations corresponding to the averaged Hamiltonian. Whitham 
( 1 9 6 7 ~ )  applied the averaging of the Lagrangian technique to gravity waves, and 
Whitham (19676) reviewed variational methods and their applications to water 
waves. Simmons (1969) used this tiechnique to determine the variations of the 
amplitudes and the phases for the problem of triad resonance in the interaction 
of capillary and gravity waves. Grimshaw (1970) used this averaging technique 
to analyze solitary waves in water of variable depth. 

The interaction of capillary-gravity waves wikh an external subsonic gas is 
treated in the next section. Capillary waves on a cylindrical column of liquid are 
then treated in $ 3 while the problem of non-linear hot electron plasma oscillations 
is treated in $4. 

2. Interaction of capillary-gravity waves with a subsonic gas 
In this section we consider non-linear waves on the interface between an 

inviscid liquid and an inviscid subsonic gas flowing with a uniform velocity U, 
parallel to this interface. The gas is assumed to be of infinite depth, while the 
liquid is assumed to be of finite depth with its second face adjacent to a solid 
surface. The motion is assumed to be two-dimensional and 60 be represented by 
potential functions. Distances and time are made dimensionless using 

k;l = (g/pg)* and (glc,)-*, 

where g is the body acceleration assumed to be acting toward the liquid, and p 
and CT are the liquid’s density and surface tension respectively. The gas density 
ps is assumed to be small compared to the liquid densiky so thab the gas body force 
can be neglected. Moreover, the gas velocity V, is assumed to be very much larger 



The method of multiple scales and non-linear dispersive waves 465 

than the surface wave velocity, so that the transient motion of the gas can be 
neglected. 

A Cartesian co-ordinate system x, y is introduced such that the x axis is in the 
plane of the undisturbed interface while the y axis is normal to this interface and 
directed from the liquid to the gas. The potent.ia1 functions representing the 
motions of the liquid and the gas are taken to be 

g % W x ,  Y, t ) ,  U,b+ @(x, Y, t)l/lc, 
where the dimensionless functions q5 and @ are given by 

v2q5 = 0) - h  < y 6 7 (2.1) 

and (see, for example, Van Dyke 1964, p. 107) 

@,,+m2@,, = M2[Q(y -  1) (2@$+ a:+@;) (@xz+@,,) 

+(2@x+@~)@.,,+2(1+@x)@,@,,+@~~,,] (7 < y < co) (2.2) 

for - 00 < x < 00, where ~ ( x ,  t) is the elevation of the wave above the undisturbed 
interface, M is the gas Mach number, and 

m2 = 1-MZ. 

Away from the gaslliquid interface, 

# , = O  at y = - h ,  
aU+O as y+00, 

where h is the dimensionless depth of the undisturbed liquid layer. At the gas/ 
liquid interface, 6he normal components of the gas and the liquid velocities are 
equal bo each other and to that of the interface itself; that is 

The remaining boundary condition is provided by the balance of the normal 
forces at  the interface; that is, 

7--q5t+W:+q5;) = T.&+T3-~-*~xQp at Y = 7 (2.7) 

where x = pg Ui/(pgcr)g and C, is the pressure perturbation coefficient exerted by 
the gas on the interface due to the appearance of waves, and iti is given by (see, 
for example, Liepmann & Roshko 1960, p. 206) 

C, = ( 2 / y M 2 ) { [ l - Q ( y - 1 ) M 2 ( 2 @ . , + @ ~ + @ ~ ) ] y ~ y - - l -  1 1, (2.8) 

with y the specific heat ratio of the gas. 

amplitudes using the method of multiple scales, we assume that 
To de6ermine an approximate solution for (2.1)-(2.8) for small but finite 

3 

n=l 
3 

n= 1 
3 

n = l  

7(x, t )  = c enTn(L 776) + 0(e4), (2.9) 

(2.10) 

(2.11) 

q5h y, t )  = 2 en$n(E, 796, y) + “242(t, 6, 7) + O(C4), 

wz, 9, t )  = x en@,(<, 796, y) + O(e4), 

30 F L M  48 
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where e is a small parameter of the order of tihe maximum steepness ratio of the 
wave, and 

5 = E ~ X ,  r = €2t, e = g c , 7 ) / ~ 2 .  (2 .12)  

Thus, c and r are slow scales, whereas 0 is a fast scale. Since (2 .3 )  and (2 .4 )  are 
linear, each g5, satisfies (2 .3 )  while each @, satisfies (2 .4 ) .  The function $2 corres- 
ponds to absorbing the Bernoulli constant into the potential of the liquid. The 
derivatives are transformed according to 

a a a  
- = k - + + 2 -  
ax ae a t '  (2 .13a)  

(2 .13b)  

( 2 . 1 3 ~ )  

where k =  cc and w = -CT. (2 .13d)  

Substituting (2.9)-(2.13) into (2.1)-(2.8),  and equating coefficients of like 
powers of e, we get equations to determine r,.g5,. and CD,. The solution of the 
first-order problem is taken t o  be 

rl = A ( 6 ,  7) eis + A(E, 7) e-is, (2 .14)  

(2 .15)  

i 
m 

Q1 = - - [ A  (c, 7 )  e@ - A([, r )  e-ie] e--kmg, (2 .16)  

where A is a complex unknown function of fl  and r ,  and w and E satisfy the dis- 
persion relationship 

(2 .17)  w2 = k(k2  - kx + l ) / C l ,  C, = coth nkh. 

Then, the solukion of the second-order problem is 

T~ = 2fi A2eZie + CC, (2 .18)  

w cosh 2k(y  + h) 
Ic sinh 2kh 

g52 = 2i-f2A2e2ie + cc, (2.19) 

(2 .20 )  
m 

where CC stands from complex conjugate, and 

w2(3  - C; - 4C1C2) + 2 k 2 x [ ~ '  + k(r + 1 )  M4]/m3 
4 

x [4k2-2kx+  1 - 2 ( k 2 - k ~ +  l ) C J C l ] ,  

fl = 

f2 =fi-gclk,  (2 .22)  

(2 .21)  

(2.23) 
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With the iirst- and second-order solutions known, the third-order problem 
becomes 

k&y+h)sinhk(y+h) eie+CC, (2.24) 
WA +- sinh kh 

k2m2@3ee + @3yY = - 4i(p1 +p2 y) A22eiee--jkmg 

- wq,, + #3y = - ( 4ip3 A 2 2  + A,) eie + CC + NSPT 

Icy,, - @3Y = - (4ip4A22 + A,) eis + CC + NSPT 

-m[2kAE+kgA-2mkktAy]eiee-km~+CC+NSPT, (2.25) 

(2.26) 

(2.27) 

at y = 0, 

at y = 0, 

+i-Whk,A+i(2k-x)Ai+ik~A eis+CC+NSPT at y = 0, (2.28) 

where NSPT stands for non-secular producing terms, and thep's are defined in the 
appendix. 

The particular solution of (2.24)-(2.28) contains secular terms which make 
q3/yl be unbounded as 0 + 00. The condition which must be satisfied for there to 
be no secular terms is 

2A, + 2cU A,  + C; Aht = 8iJA2X, (2.29) 

where cu = dw/dk is the group velocity, ci = dc,/dk, and 

k 1 

k 
2c1 w 

(2.30) 

If  we let A = iaexp ip with real a and p, the solution to second order is 

y = ea cos (0+/3) + e2a2fi cos 2(6'+/3) + 0(e3) ,  (2.31) 

cosh 2k(y + h) 
k sinh 2kh + 0(e3), cash '(y + h, - e2a2Wf2 sin 2(e +p)  $$=- eaw sin (0 + p)  k sinh kh 

(2.32) 

m 
(2.33) 

@ = -sin (0 +PI e-kmu + - f 3  + Q ~ ( Y  + 1) $ y] sin 2(0 +p)  e-zkmg + 0 ( € 3 ) ,  

where k = 8 , ,  w = - 8  t ,  (2.34) 

( a k p r )  + c,(ak/at)  = 0, (2.35) 

w2 = k(k2- kx + 1) tanh k7&, (2.36) 

(aaz/h) + a(c,a2)/a[ = 0, (2.37) 

(8pja.r) + C,(ap/a[) = Ja2. (2.38) 

If w and k are constants, and if a and p are independent of [, bhan a = a constant 
and p = Ja2r. In  this case, the above solution reduces to that obtained by Nayfeh 
& Saric (1971). If, in addition, x = 0 (no external gas), the above solution reduces 
to those obtained by Kamesvara Rav (1920), Barakat & Houston (1968), and 

62a2 [ 
ea 
m 

30-2 
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Nayfeh (1970~).  As h-t co also (infinite depth), the solution reduces to  those of 
Wilton (1915) and Pierson & Fife (1961). 

For an infinite liquid depth (i.e. h-too), 

1 0 2 -  k2X[m2 + t(7 + 1 )  ~ 4 1 / m 3  
, (2.39) 1 - 2k2 fi = 2 

f 2  = f1- @, (2.40) 

(2.41) 

w2 = k(k2-kX+ 1). (2.42) 

Equations (2.31) and (2.33) remain unchanged in form while (2.32) becomes 

$ = -ea(w/k)s in(0+p)ek~-e2a2f2(w/k)s in  2(@+p)ezk”+O(s3). (2.43) 

I n  the a,bsence of the external gas (i.e. x = 0 ) )  

(2.44) 

w2 = k(k2 + 1) tanh klt. (3.45) 

I n  this case, 7 and q5 are still given by (2.31) and (2.32) while 0 = 0. If, in addition, 
the liquid is infinite in depth, 

l + k 2  
7 = ea cos (0 + p) + &k - e2u2 cos 2(8 + p) + O(e3),  

1 - 2k2 
(2.46) 

k2 ~ i n 2 ( 8 + , 8 ) e ~ ~ y + O ( e ~ ) ,  (2.47) 4 = -€a- sin(8+P)eky-- #e2a2w---- k 1 - 2k2 

w2 = k(k2+ 1). (2.48) 

I n  addition, if w and k are constants, the solution (2.46)-(2.48) with a and pgiven 
by (2.37) and (2.38) is the same as that obtained by Nayfeh (1971a). 

Although the solution (2.31)-(2.38) is valid for a wide range ofvalues of w and k, 
i t  breaks down when 

w 

k(4k2--2k~+l)tanh2kh = 2(k2-k~+ 1)tanhkh. (2.49) 

This condition represents the second-harmonic resonant case treated by Nayfeh 
(1971 b )  for constant w and k but varying a andp.  The second-harmonic resonant 
case of infinite liquid depth and no external gas has been treated by Simmons 
(1969) and McGoldrick (1970). Periodic wave solutions for this resonant condition 
were obtained by Nayfeh & Saric (1971)) Barakat & Houston (1968) for x = 0, 
andWilton(1915)andPierson &Fife(1961)forx= Oandh-tm. 

Equations (2.35)) (2.37)) and (2.38) have the same form as those which will be 
obtained in $$ 3 and 4 for waves on a circular column of liquid, and €or waves in a 
hot electron plasma. Therefore, the discussion of these equations is presented for 
the three problems discussed in this paper in $5. 
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3. Waves on the surface of a cylindrical jet of fluid 
It is assumed that the fluid jet is both inviscid and incompressible, and the 

effects of the surrounding fluid are negligible. The flow is assumed to start from 
rest so that it can be represented by a potential function 6, and the undisturbed 
jet is assumed to be circular with radius R. The following analysis is restricted to 
axisymmetric waves. 

All physical quantities are made dimensionless using the characteristic length 
R, and the characteristic time (pR3/T)S, where p and T are the fluid density and 
surface tension respectively. In  a dimensionless cylindrical co-ordinate system 
(r and x with x along the jet axis), the dimensionless potential function # is 
given by 

V2# = 0, 

for r 6 l+T(x,t) and - X I  < x < X I ,  

where 7 is the dimensionless elevation in the r direction, and t is the dimensionless 
time. The kinematic and dynamic boundary conditions at the liquid surface are 

rt + 54 = r x $ x ,  (3.2j 

a t  T =  l + ~ ( x , t ) .  (3.3) 

$ht - k(#: + $5;) + Tzx(  1 + T i ) - %  - (1 + 7)-1( 1 + 73-4 + 1 = 0 

To determine an approximate solution to (3.1)-(3.3) we assume that 

3 

n=l 

3 

V ( X ,  t) = C E n V n ( t ,  798) + 0(e4),  (3.4) 

(3.5) 

where E is a small but finite amplitude quantity which is of the order of the 
maximum steepness ratio of the surface waves, and 

g = €zx, = € 2 t ,  e = ~ ( 5 , ~ ) p .  (3.6) 

The transformation of the x and t derivatives are the same as in (2.13). Sub- 
stituting (3.4)-(3.6) into (3.1)-(3.3) and equating coefficients of like powers of €, 

we obtain equations to determine yn and &. 
The solution of the first-order problem is taken to be 

rl = A (&7) eie + A([, 7) e--i@, 

$1 = i ( @ / k )  [A(<, T)eiB - A(5, 7)ePieI [4dkr)/11(k)I, 

(3.7) 

(3.8) 

where o and k satisfy the dispersion relationship 

u2 = k(k2- 1)  [I1(k) / lO(k)] .  (3.9) 

Here, I. and Il are the modified Bessel functions of the zero and first order, 
respectively. If o, k ,  and A are assumed to be constants, (3.7)-(3.9) reduce to 
the solution of Rayleigh (1945, p. 351). Travelling-wave solutions are possible 
only when k > 1. If k < 1, disturbances grow with time, and hence the liquid 
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column is unstable. In what follows, we restrict our analysis to the case k > 1. 
With the above first-order solution, the solution of the second-order problem is 

v2 = qlAB+q3A2e2ie+CC, (3.10) 

q5z = i~zwAz[10(2kr ) /2k1~(2k) ]  e2iB + CC, (3.11) 

where q1 = 4w2[10(k)/11(k)] - $w2+ 1 - ik2 ,  (3.12) 

(3.13) 

(3.14) 

3W(l-331C2) [1o(k)/11(k)I + ( k 2 -  1) [11(k)/&(k)I + k- ( l Ik ) I ,  
P z  = 4k2- 1 - 2w2[10(2k)/k11(2k)] 

q 3  = &2+ [ f u 0 ( ~ ) / 4 ( 4 1 -  4- 
If the initial conditions are periodic in x, and if the motion is started from rest, 
then q1 = -4. 

The above first- and second-order solutions determine the third-order problem. 
ICs particular solution contains secular terms which make 73/71 unbounded as 

(3.15) 
0 -+ co unless aA aA 

2 - + 2 ~  -+cikCA = 8iJA2B, 
a7 g aE 

where cg = dw/dk, c6 = dc,/dk, and 

J = -@ [Ql+w (3.16) 

As in $3.1, letting A = Qa exp ip with real a and p, and separating real and 
imaginary parts in (3.15), we obtain 

(3.17) 

(3.18) 

If we consider the temporal variation only, q k ,  and a are constants, and 
,8 = JaZr. This latter solution agrees with that of Wang (1968) if q1 = - 4. Since 
J-tco as k-t 1, the solution presented in this section is invalid near k = 1. Nayfeh 
(1970b) obtained an expansion valid near k = 1, taking into account the tem- 
poralvariationonly. Equations (3.17) and (3.18) have the same form as (2.37) and 
(2.38) and they will be discussed in $ 5 ,  

4. Non-linear oscillations in a hot electron plasma 
We consider in this section non-linear longitudinal travelling waves in a hot 

electron plasma in the absence of magnetic fields. The fluid dynamical equations 
are an a 

at ax - +- (nu) = 0, 

au au 1 ap e 
at ax mnax m 
-+u-+-- = --E, 

2 + 3 - ( p u ) - 2 u -  a ar, = 0,  
at ax ax (4.3) 
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where n is the electron number density, m is the mass of an electron, u is the 
velociby, p is the pressure, and E is the electric field. 

To determine an approximate solution for small but finite amplitude waves we 
assume that 

3 

s=1 
n = no + C. eSns(t, T,B) + O(e4), (4.5) 

E = esEs(E, T,O) + O(e4), 
s=1 

where (, 7 ,  and I9 as well as the derivatives are given by (2.12) and (2.13). Here e 
is a small but finite quantity of the order of the amplitude of oscillation; it is 
introduced for convenience to keep track of the ordering and it will be set equal to 
unity in the final solution. 

Substituting (4 .5) - (44 ,  (2.12) and (2.13) into (4.1)-(4.4), and equating co- 
efficients of like powers of e, we get equations to determine the different perturba- 
tion quantities. The solution of the first-order problem is taken to be 

El = A(E,~)eie+B(E,7)e-ie, (4.9) 

3ikp0 
4nen0 

p l  = ___ [A ( E ,  T) eie - A($, 7 )  e-io], 

(4.10) 

(4.11) 

(4.12) 

where w and k satisfy the dispersion relationship 

~2 = O J ~  + k2Vz. (4.13) 

Here, wp and V ,  are the plasma frequency and the thermal speed and given by 

w; = 4nnoe2/m, Vz = 3po/mno. (4.14) 

Then, the solution of the second-order problem is 

(4.18) 
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Using the first- and second-order solutions, we can combine the third-order 
equations to give 

a2E3 
ww; (- + E3) = i(o;A, + w(Aw) ,  + V:k[(Ak),  + (A451 

+wV$4k),- 8iw2JA2B}eio+ CC+NSPT, (4.19) 

where (4.20) 

Annihilating the secular producing terms on the right-hand side of (4.19), and 
using the relationships k, = - wt = - cgk5 and cg = dw/dk, we get 

(4.21) 

whereci = dc,/dk. Letting A = &zexpiPwithrealaandpin (4.21), andseparating 
the real and imaginary parts, we obtain 

aaz a 
- +- (C@) = 0,  
a7 at (4.22) 

(4.23) 

If w and k are taken to be constants, then (4.21) reduces to the equations of 
Tidman & Stainer (1965) and Nayfeh (1965). Equations (4.22) and (4.23) have 
the same form as (2.37) and (2.38) obtained for the interaction of capillary and 
gravity waves, and (3.17) and (3.18) obtained for waves on the surface of a 
circular liquid jeb. These equation are discussed in the next section. 

5. Discussion 
In our treatment of non-linear dispersive waves (i) on the interface between a 

subsonic gas and a liquid, (ii) on the surface of a circular column of liquid, and 
(iii) in a hot electron plasma, we found that the wave-numbers, amplitudes, and 
phases are governed by 

ak ak 
at gax ' 

aa2 a 
- + - (cga2) = 0,  at ax 

-+c  - =  0 

where cg is the group velocity and J is a known function of k and the parameters 
of the problem considered. Of course, cg and J are not the same for the three 
problems considered. 

Although the three physical problems considered in this paper represent 
weakly non-linear waves, they seem to be rather unrelated problems. However, 
when we treated them by the same mathematical technique, we found out that 
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the equations governing the wave-number, amplitude and the phase are for- 
mallygiven by the same equations (5.1)-(5.3). This result lead us to conclude that 
these problems represent the same physical phenomenon. To emphasize this fact, 
we felt that we should publish all of these results in one paper rather than in three 
separate papers. 

To explain physically why these three problems should be represented formally 
by the same equations, we notice that (5.1) represents the conservatiQn of the 
waves. Equation (5 .2 )  states that the energy represented by the square of the 
amplitude propagates with the group velocity cg along the characteristics 

ax/& = cg(k ) .  (5.4) 

This is so because, if Ax is a distance between two of these characteristics, 

because (5.2) can be written as 
dazldt = - ciksa2 

along the characteristics (5.4). To interpret (5.3), we observe that in the non- 
linear case, the dispersion relation can be writtien as 

u = f ( k ; a 2 ) .  (5.7) 

For small a one can expand this equation to obtain 

w = fo(k) + f2(k)a2  + .. ., 
where wo = f o ( k o )  is the linear dispersion relationship. If we assume that 

w = W ~ + A U ,  k = ko+Ak (5.9) 

in (5.8), and keep linear terms only, we have 

Aw = c,Ak + f2(ko)a2,  (5.10) 

where c, = fh(ko)  is the group velocity. If we introduce a phase function P(X ,  t )  
such that 

(5.11) 

then (5.10) will have the form (5.3). Therefore (5.3) represents the second-order 
term in the dispersion relationship. 

Equations (5.1) and (5.2) show that to second order k and a are not altered by 
the non-linear motion. However, the effecti of the non-linear motion modified P as 
seen from (5.3). These results indicate that, to determine (5.1)-(5.3) for any 
weakly non-linear dispersive non-dissipative wave problem, we do not need to  
carry out an analysis similar to those presented in §§2-4. From a linear analysis, 
we get the dispersion relationship wo = fo(ko)  and the group velocity cg = dwo/dk, 
which determines (5.1) and (5 .2 ) .  To write down (5.3), we need only to determine 
J .  This can be done by carrying out an analysis for constant w ,  k, and a to obtain 
either d$/dt or d$/dx because 

J = ( 1/e2a2) [a$/&, c,d$/dx] 
from (5.3). 
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To solve (5.1)-(5.3), we solve (5.1) first to obtain k = a constant and hence 
w = a constant along the characteristics dx/dt = cg(k) ,  which are straight lines in 
the ( x ,  t )  plane as a consequence. By writing (5.2) and (5.3) as in (5.6) and 

dpldt = - Je2a2 (5.12) 

along the same characteristics, we can compute a2 and then p. 
For a constant w and hence a constant k, (5.3) reduces to 

aa2 a d  
- + c  - = 0 
at Q ax . (5.13) 

The solution of (5.13) is 
a2 = F(x-c,t), (5.14) 

where F is determined from the initial conditions. Since J = J ( k )  is a constant, 
the solution of (5.3) is 

/3 = $e2(J/c,) (X + c,t) F ( x  -cut )  + s2G(x - cgt), (5.15) 

where G is determined also from the initial conditions. A similar solution to (5.14) 
and (5.15) was obtained by Nayfeh (1971 a) for the case of waves on the surface of 
a liquid of infinite depth. 

If the initial conditions are such that a and p are independent of position, in 
addition to w and k being constants, then a = a constant, and 

p = JE2a2t. (5.16) 

This yields a frequency shift. If a and are time-independent, 

~3 = Js2a2x (5.17) 

and the non-linear motion produces a wave-number shift. 

We are indebted to Dr W. S. Saric for valuable comments and discussions. 
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